
杜立林 博士
北京生命科學研究所資深研究員
Li-Lin Du, Ph.D. Investigator, NIBS, Beijing, China
Phone:010-80726688-8505
Fax: 010-80726689
E-mail:dulilin@nibs.ac.cn
教育經(jīng)歷 Education
2001年 耶魯大學分子生物物理學與生物化學系博士
Ph.D., Department of Molecular Biophysics
& Biochemistry (MB&B), Yale University, USA
1995年 中國科學院上海生物化學研究所碩士
M.Sc., Shanghai Institute of Biochemistry,
Chinese Academy of Sciences, China
1992年 南開大學生物系學士
B.Sc., Department of Biology, Nankai University, China
工作經(jīng)歷 Professional Experience
2021年6月- 北京生命科學研究所資深研究員
Investigator, National Institute of Biological Sciences, Beijing, China
2013年-2021年 北京生命科學研究所高級研究員
Associate Investigator, National Institute of Biological Sciences, Beijing, China
2007-2013年 北京生命科學研究所研究員
Assistant
Investigator, National Institute of Biological Sciences, Beijing, China
2001-2007年 美國斯克利普斯研究院博士后
Postdoctoral Research
Associate, The Scripps Research Institute, La Jolla, CA, USA
研究概述 Research Description
生命體是由成千上萬基因所控制的復雜系統(tǒng),而這些基因是被億萬年的進化所塑造過的。深入理解生命現(xiàn)象需要在系統(tǒng)層次上對基因型如何決定表型有更深刻的認識,也需要更多地了解基因組進化的機制和規(guī)律。本實驗室利用裂殖酵母開展研究。作為一種單細胞真核模式生物,裂殖酵母具有實驗周期短、基因組緊湊、遺傳學手段強大、多數(shù)基因與人類基因同源等優(yōu)勢,因而既是深入解析生命過程背后機理的完美研究對象,也是系統(tǒng)生物學研究的高效平臺。我們近期的研究重點包括:
1. 違背孟德爾定律的自私殺手基因的作用機制和分子進化的研究
2. 基因必需性省卻的方式和規(guī)律的研究
3. 自噬相關蛋白的機理研究
Living organisms are complex systems controlled by thousands of genes, and these genes have been shaped by evolution over hundreds of millions of years. To gain a deep understanding of life, it is necessary to pursue how genotype determines phenotype at the systems level and to study the mechanisms and principles governing genome evolution. We use the fission yeast Schizosaccharomyces pombe as a model system to carry out research. Working with fission yeast has many advantages, including its small genome size, the ease of genetics and cell biology, and extensive homology between its genes and human genes. Our ongoing research mainly includes the following aspects:
1. Studying how selfish killer genes act and evolve.
2. Systematic investigation of bypassable gene essentiality.
3. Dissecting the molecular mechanisms of autophagy-related proteins.
代表文章 Representative Publications
-
Li J, Wang H-T, Wang W-T, Zhang X-R, Suo F, Ren J-Y, Bi Y, Xue Y-X, Hu W, Dong M-Q, Du L-L (2019). Systematic analysis reveals the prevalence and principles of bypassable gene essentiality. Nat. Commun. 10:1002
-
Liu X-M, Yamasaki A, Du X-M, Coffman VC, Ohsumi Y, Nakatogawa H, Wu J-Q, Noda NN#, Du L-L# (2018). Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with a vacuole membrane protein. eLife 7:e41237 (#co-corresponding authors).
-
Hu W, Jiang Z-D, Suo F, Zheng J-X, He W-Z, Du L-L (2017). A large gene family in fission yeast encodes spore killers that subvert Mendel’s law. eLife 6:e26057.
-
Wei Y, Diao L-X, Lu S, Wang H-T, Suo F, Dong M-Q, Du L-L (2017). SUMO-targeted DNA translocase Rrp2 protects the genome from Top2-induced DNA damage. Mol. Cell 66:581–596.
-
Liu X-M, Sun L-L, Hu W, Ding Y-H, Dong M-Q, Du L-L (2015). ESCRTs cooperate with a selective autophagy receptor to mediate vacuolar targeting of soluble cargos. Mol. Cell 59:1035-1042.
-
Zhang J-M, Liu X-M, Ding Y-H, Xiong L-Y, Ren J-Y, Zhou Z-X, Wang H-T, Zhang M-J, Yu Y, Dong M-Q, Du L-L (2014). Fission yeast Pxd1 promotes proper DNA Repair by activating Rad16XPF and inhibiting Dna2. PLoS Biol. 12:e1001946.
-
Qu M, Rappas M, Wardlaw CP, Garcia V, Ren J-Y, Day M, Carr AM#, Oliver AW#, Du L-L#, and Pearl LH# (2013). Phosphorylation-dependent assembly and coordination of the DNA damage checkpoint apparatus by Rad4(TopBP1). Mol. Cell 51: 723–736 (#co-corresponding authors).
-
Sun L-L, Li M, Suo F, Liu X-M, Shen E-Z, Yang B, Dong M-Q, He W-Z, and Du L-L (2013). Global analysis of fission yeast mating genes reveals new autophagy factors. PLoS Genet. 9: e1003715.
-
Zhou Z-X, Zhang M-J, Peng X, Takayama Y, Xu X-Y, Huang L-Z, and Du L-L (2013). Mapping genomic hotspots of DNA damage by a single-strand-DNA-compatible and strand-specific ChIP-seq method. Genome Res. 23: 705-715.
-
Han TX, Xu X-Y, Zhang M-J, Peng X, and Du L-L (2010). Global fitness profiling of fission yeast deletion strains by barcode sequencing. Genome Biol. 11: R60.