2021-至今 北京生命科學研究所 生物信息學中心主任
Director of Bioinformatics Center, National Institute of Biological Science, Beijing
2016~2021 中國科學技術大學,生命科學與醫學部 副研究員
Associate researcher, Department of life sciences and medicine, University of science and technology of China
2014~2016 美國哥倫比亞大學 博士后研究員
Postdoctoral researcher, Department of chemistry, Columbia University
2010~2014 美國加州大學伯克利分校 博士后
Post-doctoral, Department of chemistry, University of California, Berkeley
近年來多種測序技術被廣泛應用于基礎生物學和臨床醫學研究,使我們可以從基因組層面理解細胞發育、分化、轉化、病變的內在機制。然而,深入分析海量測序數據仍是難題,尤其是單細胞測序數據規模的指數級提高,亟需高效準確的生物信息學算法和工具。NIBS生物信息學中心為各個實驗室提供生物信息學分析服務,包括對單細胞基因組、空間轉錄組、表觀遺傳組、蛋白質組等多種測序數據的深入解析和挖掘。同時,我們關注于開發新型機器學習和深度學習算法,結合大語言模型分析多種類型的大規模測序數據,探索各種重大疾病的發病機制,挖掘潛在的藥物靶點,預測用藥后的基因組變化,為患者的個性化精準診療提供支持。
In recent years, various sequencing technologies have been widely applied in basic biology and clinical medical research, allowing us to understand the intrinsic mechanisms of cell development, differentiation, transformation, and pathological changes at the genomic level. However, in-depth analysis of vast sequencing data remains a challenge, especially with the exponential increase in the scale of single-cell sequencing data, which urgently requires efficient and accurate bioinformatics algorithms and tools. The NIBS Bioinformatics Center provides bioinformatics analysis services for various laboratories, including in-depth interpretation and exploration of sequencing data from single-cell genomics, spatial transcriptomics, epigenomics, proteomics, and more. We also focus on developing novel machine learning and deep learning algorithms, integrating large language models to analyze various types of large-scale sequencing data, exploring the pathogenesis of diseases, identifying potential drug targets, predicting genomic changes after drug administration, and supporting personalized precision diagnosis and treatment for patients.
發表文章
1. Yinlei Hu#, Siyuan Wan#, Yuanhanyu Luo#, Yuanzhe Li, Tong Wu, Wentao Deng, Chen Jiang, Shan Jiang, Yueping Zhang, Nianping Liu, Zongcheng Yang, Falai Chen*, Bin Li* & Kun Qu*, “Benchmarking algorithms for single-cell multi-omics prediction and integration”, Nature Methods, 21, 2181-2194 (2024).
2. Hao Xu, Shuyan Wang, Minghao Fang, Songwen Luo, Chunpeng Chen, Siyuan Wan, Rirui Wang, Meifang Tang, Tian Xue, Bin Li*, Jun Lin* & Kun Qu*, “SPACEL: deep learning-based characterization of spatial transcriptome architectures”, Nature Communications, 14, 7603 (2023).
3. Bin Li#, Wen Zhang#, Chuang Guo#, Hao Xu, Longfei Li, Minghao Fang, Yinlei Hu, Xinye Zhang, Xinfeng Yao, Meifang Tang, Ke Liu, Xuetong Zhao, Jun Lin, Linzhao Cheng, Falai Chen, Tian Xue & Kun Qu, “Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution”, Nature Methods, 19, 662–670 (2022).
4. Bin Li#, Young Li#, Kun Li, Lianbang Zhu, Qiaoni Yu, Jingwen Fang, Pengfei Cai, Chen Jiang, Kun Qu, “APEC: An accesson-based method for single-cell chromatin accessibility analysis”, Genome Biology, 21, 116 (2020).
5. Chuang Guo#, Bin Li#, Huan Ma, Xiaofang Wang, Lianxin Liu, Xiaoling Ma, Jianping Weng, Haiming Wei, Tengchuan Jin*, Jun Lin*, Kun Qu*, “Single-cell analysis of two severe COVID-19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm”, Nature Communications, 11, 3924 (2020).