教育經(jīng)歷 Education
2001年 耶魯大學(xué)分子生物物理學(xué)與生物化學(xué)系博士
Ph.D., Department of Molecular Biophysics
& Biochemistry (MB&B), Yale University, USA
1995年 中國(guó)科學(xué)院上海生物化學(xué)研究所碩士
M.Sc., Shanghai Institute of Biochemistry,
Chinese Academy of Sciences, China
1992年 南開(kāi)大學(xué)生物系學(xué)士
B.Sc., Department of Biology, Nankai University, China
工作經(jīng)歷 Professional Experience
2021年6月- 北京生命科學(xué)研究所資深研究員
Investigator, National Institute of Biological Sciences, Beijing, China
2013年-2021年 北京生命科學(xué)研究所高級(jí)研究員
Associate Investigator, National Institute of Biological Sciences, Beijing, China
2007-2013年 北京生命科學(xué)研究所研究員
Assistant
Investigator, National Institute of Biological Sciences, Beijing, China
2001-2007年 美國(guó)斯克利普斯研究院博士后
Postdoctoral Research
Associate, The Scripps Research Institute, La Jolla, CA, USA
研究概述 Research Description
生命體是由成千上萬(wàn)基因所控制的復(fù)雜系統(tǒng),而這些基因是被億萬(wàn)年的進(jìn)化所塑造過(guò)的。深入理解生命現(xiàn)象需要在系統(tǒng)層次上對(duì)基因型如何決定表型有更深刻的認(rèn)識(shí),也需要更多地了解基因組進(jìn)化的機(jī)制和規(guī)律。本實(shí)驗(yàn)室利用裂殖酵母開(kāi)展研究。作為一種單細(xì)胞真核模式生物,裂殖酵母具有實(shí)驗(yàn)周期短、基因組緊湊、遺傳學(xué)手段強(qiáng)大、多數(shù)基因與人類基因同源等優(yōu)勢(shì),因而既是深入解析生命過(guò)程背后機(jī)理的完美研究對(duì)象,也是系統(tǒng)生物學(xué)研究的高效平臺(tái)。我們近期的研究重點(diǎn)包括:
1. 違背孟德?tīng)柖傻淖运綒⑹只虻淖饔脵C(jī)制和分子進(jìn)化的研究
2. 基因必需性省卻的方式和規(guī)律的研究
3. 自噬相關(guān)蛋白的機(jī)理研究
Living organisms are complex systems controlled by
thousands of genes, and these genes have been shaped by evolution over hundreds
of millions of years. To gain a deep understanding of life, it is necessary to pursue
how genotype determines phenotype at the systems level and to study the
mechanisms and principles governing genome evolution. We use the fission yeast Schizosaccharomyces pombe as a model
system to carry out research. Working with fission yeast has many advantages,
including its small genome size, the ease of genetics and cell biology, and
extensive homology between its genes and human genes. Our ongoing research
mainly includes the following aspects:
1. Studying how selfish killer genes act and evolve.
2. Systematic investigation of bypassable gene
essentiality.
3. Dissecting the molecular mechanisms of autophagy-related
proteins.
代表文章 Representative Publications
1. Zhao D, Zou C-X, Liu X-M, Jiang Z-D, Yu Z-Q, Suo F, Du T-Y, Dong M-Q, He
W, Du L-L (2020). A UPR-induced soluble ER-phagy receptor acts with VAPs to
confer ER stress resistance. Mol. Cell 79:963
2. Li J, Wang H-T, Wang W-T, Zhang X-R, Suo F, Ren J-Y, Bi Y, Xue Y-X, Hu W,
Dong M-Q, Du L-L (2019). Systematic analysis reveals the prevalence and
principles of bypassable gene essentiality. Nat. Commun. 10:1002
3. Liu X-M, Yamasaki A, Du X-M, Coffman VC, Ohsumi Y, Nakatogawa H, Wu J-Q,
Noda NN#, Du L-L# (2018). Lipidation-independent vacuolar
functions of Atg8 rely on its noncanonical interaction with a vacuole membrane
protein. eLife 7:e41237 (#co-corresponding authors).
4. Hu W, Jiang Z-D, Suo F, Zheng J-X, He W-Z, Du L-L (2017). A large gene
family in fission yeast encodes spore killers that subvert Mendel’s law. eLife
6:e26057.
5. Wei Y, Diao L-X, Lu S, Wang H-T, Suo F, Dong M-Q, Du L-L (2017). SUMO-targeted
DNA translocase Rrp2 protects the genome from Top2-induced DNA damage. Mol.
Cell 66:581–596.
6. Liu X-M, Sun L-L, Hu W, Ding
Y-H, Dong M-Q, Du L-L (2015). ESCRTs cooperate with a selective autophagy
receptor to mediate vacuolar targeting of soluble cargos. Mol. Cell
59:1035-1042.
7. Zhang J-M, Liu X-M, Ding Y-H,
Xiong L-Y, Ren J-Y, Zhou Z-X, Wang H-T, Zhang M-J, Yu Y, Dong M-Q, Du L-L
(2014). Fission yeast Pxd1 promotes proper DNA Repair by activating Rad16(XPF) and inhibiting
Dna2. PLoS Biol. 12:e1001946.
8. Sun L-L, Li M, Suo F, Liu X-M, Shen E-Z, Yang B, Dong M-Q, He W-Z, and Du
L-L (2013). Global analysis of fission yeast mating genes reveals new autophagy
factors. PLoS Genet. 9: e1003715.
9. Zhou Z-X, Zhang
M-J, Peng X, Takayama Y, Xu X-Y, Huang L-Z, and Du L-L (2013). Mapping genomic
hotspots of DNA damage by a single-strand-DNA-compatible and strand-specific
ChIP-seq method. Genome Res. 23: 705-715.
10. Han TX, Xu X-Y,
Zhang M-J, Peng X, and Du L-L (2010). Global fitness profiling of fission yeast
deletion strains by barcode sequencing. Genome Biol. 11: R60.